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ABSTRACT 

Self-driving or autonomous vehicles consist of software and hardware 
subsystems that perform tasks like sensing, perception, path-planning, vehicle 
control, and actuation. An error in one of these subsystems may manifest itself in 
any subsystem to which it is connected. Errors in sensor data propagate through 
the entire software pipeline from perception to path planning to vehicle control. 
However, while a small number of previous studies have focused on the 
propagation of errors in pose estimation or image processing, there has been little 
prior work on systematic evaluation of the propagation of errors through the entire 
autonomous architecture. In this work, we present a simulation study of error 
propagation through an autonomous system and work toward developing 
appropriate metrics for quantifying the error at both the subsystem and system 
levels. Finally, we demonstrate how the framework for analyzing error propagation 
can be applied to analysis of an autonomous systems with a lidar-based sensing 
and perception system. 
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1. INTRODUCTION 

Autonomous ground vehicles (AGV) have 
become more capable in recent years [1]. However, 
the struggle of these vehicles with environmental 
conditions like weather has been well documented, 
qualitatively [2]. Nevertheless, there has been 

relatively little quantitative evaluation of errors 
induced by environmental factors like rain and dust.  

Past work in quantitative error measurement tends 
to focus either directly on the sensor data or on the 
overall system-level performance. For example, 
there have been several studies that quantify the 
influence of phenomena like rain or snow on lidar 
sensor performance [3]. Similarly, there have been 
some laboratory studies on the effect of dust on 
lidar [4]. System level analyses have focused on 
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high-level metrics like average speed or distance 
traveled [5]. Additionally, some early studies 
related sensor level-errors for inertial navigation 
systems to mission performance [6][7]. 

While there is value in sensor-level or system-
level error studies, an understanding of how error 
propagates through the chain of autonomous 
subsystems is also needed. How do errors in lidar 
sensors operating in rainy conditions affect the 
point cloud, the navigation maps derived from the 
point cloud, and the path planned through those 
maps? Is there a level of rain for which the resulting 
path and map are not significantly affected, and at 
what rain rates would errors start to manifest in the 
planned path? These questions are critical to 
answer as self-driving vehicles transition to the 
consumer market.  

The primary difficulty in systematically 
measuring the relationship between 
environmentally induced sensor errors and system-
level performance is the difficulty in controlling the 
environmental error sources. It is logistically 
difficult to perform repeatable, controlled 
experiments in conditions like dust or rain. For this 
reason, some recent studies have utilized 
simulation to inject errors and faults in camera 
systems [8-11]. 

Despite these past research efforts, some basic 
questions for predicting AGV performance remain 
unanswered. How do environmentally induced 
sensor errors propagate to the “downstream” 
subsystems of the AGV? Can subsystem errors be 
predicted for various environmental conditions? In 
order to answer these questions, this study develops 
a method, utilizing simulation, for studying error 
propagation through the subsystems of an AGV. 
The study will be described in the following 
sections with an overview of the method, followed 
by a presentation of the experiment results and 
analysis. 

 
2. METHOD 

  The method used to study error propagation 
through the AGV systems is outlined below: 

 
• Define the test scenario 
• Define the AGV to be tested 
• Define sources of error 
• Define the system and subsystem level metrics 
• Perform experiments 
• Find correlations between error sources and 

metrics 
 

Obstacle detection and avoidance (ODOA) is a 
critical capability for any autonomous or semi-
autonomous system [12]. Therefore, an ODOA 
scenario was selected for this work to demonstrate 
error propagation in the AGV. In the scenario, the 
test vehicle navigated a 90-meter-long test lane. At 
the center of the lane, 45 meters from the starting 
position, was a jersey barrier, 1-meter tall x 2 
meters wide. The vehicle had to avoid the jersey 
barrier, return to the test lane, and reach the goal 
point that lies 45 meters beyond the jersey barrier. 
The 90-meter test lane was preceded by a 100-
meter lane in which the vehicle accelerated to reach 
the test speed of 10 m/s. The test course is shown 
in Figure 1.  

 
3. AUTONOMOUS GROUND VEHICLE 

The simulated test vehicle was a generic four-
wheel-drive truck with a gross vehicle weight of 
3000 kg. The simulated vehicle has a real-time 
kinematic sensor [13] for odometry measurements 
and a 3D lidar sensor mounted to the roof. 

The vehicle autonomous software was 
conceptually divided into three parts: 
sensing/perception, path planning, and vehicle 
control. The architecture was implemented in ROS 
[14]. In the autonomy system being studied, a 3D 
point cloud was generated by the lidar sensor. Point 
clouds were generated at a rate of 10 Hz and 
registered using the odometry published by the 
simulated real-time kinematic sensor.  

A slope-map was calculated from the lidar point 
cloud and converted to a cost-map. A path through 
the cost-map was calculated using A* [15]. Throttle 
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and steering commands were calculated from the 
path using the pure pursuit algorithm [16].  

 

 
 

3.1. Sensing and Perception 
A simulated lidar was the primary sensing 

modality in these experiments. The output of the 
perception algorithm was a 3D point cloud in 
sensor coordinates that was registered with the 
odometry from the real-time kinematic sensor.  

The simulated lidar was based on a 64-beam 
Ouster OS1 lidar. The sensor was mounted on the 
roof of the vehicle in a standard vertical orientation. 
The rotation rate was set to 10 Hz and the point 
cloud was published to a ROS PointCloud2 
message after each rotation.  

 
3.2. Path Planner 

For path planning, a gridded slope map was 
created from the point cloud. At each time step, the 
point cloud was registered to world coordinates 
using the current odometry. Points were then 
assigned to a grid location. The grid was centered 
at (0,0) in local East-North-Up (ENU) coordinates, 
centered on the jersey barrier obstacle. The grid 
dimensions were 250x250 meters, while the cell 
resolution was 0.5 meters.  

For the slope-based perception, the value of the 
highest and lowest points was tracked in each cell 
and the other points were discarded. The slope of 
the cell was calculated by dividing the height 
different between the highest and lowest points by 
the cell resolution. Cells with a slope greater than 
1.0 were flagged as occupied; otherwise a cell was 
unoccupied.  

The grid was updated at 10 Hz with new point 
cloud data. After each update, the path was re-
planned with the current grid and the updated 
vehicle position. An example of the A* calculation 
is shown in Figure 2. In the image, black represents 
free cells while red and purple dots represent 
occupied cells, color coded by slope. The green line 
shows the history of the vehicle and the blue line 
shows the planned path. The green circle is the goal 
point.  

 

 

  
The vehicle control subsystem used the pure 

pursuit algorithm [16] to convert the proposed path 
into throttle and steering commands. In the first 
step of the pure pursuit algorithm, a local goal point 
is found on the path at a look-ahead distance along 
the path from the current vehicle position. The 
look-ahead distance is a function of the vehicle 

Figure 1: The obstacle avoidance test course. The jersey 
barrier can be seen near the center of the image. 

Figure 2: A* grid showing path path (green line) and 
planned path (blue line) of the AGV. 
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speed. Next, the steering angle necessary to reach 
the goal points is calculated from the vehicle 
wheelbase. 

 
4. SOURCES OF ERROR 

Macfarlane and Stroila [17] identified three main 
classes of uncertainties in autonomous navigation: 
sensors, maps, and situations. Uncertainties in 
sensors include sensor noise and inaccuracy as well 
as environmentally induced errors caused by rain, 
dust, fog, or other phenomena. Map uncertainties 
include errors in object detection and localization. 
Finally, situational uncertainties pertain to 
predicting the future state of the dynamic 
environment. Since the environment in these 
experiments is static, situational uncertainties were 
not measured. Instead, the focus was on sensor and 
map errors. A summary of the error sources in these 
experiments and the ranges over which they were 
varied is listed in Table 1.  

 

4.1. Lidar Range Noise 
Lidar sensors are subject to noise errors in 

measurement accuracy. A survey of reported lidar 
specifications shows that typical RMS range errors 
are between 1-5 cm [23-25]. In this work, error is 
added as Gaussian noise to the raw sensor signals 
to approximate range error for the lidar.   

 
4.2. Rain 

The influence of rain on lidar has been well 
documented [3]. The primary effect of rain on lidar 
sensors is to reduce the range of the sensor and 
increase the range error. In the simulations reported 
in this work, the rain rate was varied from 0-28 

mm/h, with 28 mm/h representing an unusually 
heavy rain. 

 
4.3. Dust 

While it is well-known that dust can obscure lidar 
targets, there has been little work on quantifying 
this effect for automotive lidar sensors. It has been 
shown that the optical depth of the dust cloud 
correlates well with the probability of the dust 
obscuring the lidar target [4]. The primary error 
mode is for the lidar to return from the dust cloud 
itself, rather than the surfaces in the environment. 
Since the optical properties of the dust cloud are 
more important for lidar interaction than the mass 
properties, dust particles were added in nine 
increments from no dust to a totally opaque dust 
cloud. The dust cloud was added to the scene 
directly in front of the target. This mimics the 
situation where dust could obscure a target like a 
vehicle or pedestrian.  

 
4.4. GPS with Real-time Kinematic Noise 

Real-time kinematic sensors are subject to noise 
errors in measurement accuracy. A survey of real-
time kinematic lateral position errors indicates that 
error typically ranges from 0.5 to 3.0 meters [18]. 
Therefore, as with the lidar range noise, Gaussian 
noise is added to the raw lateral position to 
approximate error for the real-time kinematic 
sensor.  

 
5. METRICS 

Information flows through the subsystems from 
perception to mapping to planning to control. 
Therefore, metrics are proposed for each of these 
subsystems. These metrics are summarized in 
Table 2. 

Error type Units Range Step 
Range Noise mm  5 – 35 5 
RMS Pose Error mm  200 – 1400 200 
Dust Density  1-8 1 
Rain Rate mm/hour 4-28 4 

Table 1: Sources of error. 
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Time to complete is the total amount of time from 

the time the vehicle starts moving until it reaches 
the goal point at the end of the course.  

A trial ends in one of four states. If the vehicle 
reaches the goal point within 90 seconds, the 
vehicle successfully completes the trial and 
“Completion” is true, otherwise it is false. If the 
vehicle collided with the obstacle, it fails to 
complete the trial and “Collision” was true, and 
false otherwise. If the vehicle rolled over (flipped), 
the vehicle failed to complete the trial and “Rolled 
Over” was true, and false otherwise. 

Point cloud error quantifies the impact of 
environmental factors like rain and dust on the 
accuracy of the point cloud. Each time a scan is 
published in the simulation, the point cloud is 
compared to the “true” point cloud in the absence 
of rain or dust. The average point-wise error is 
computed by comparing the resulting clouds point 
by point. 

Odometry error is the average difference between 
the vehicle’s actual position and its position as 
measured by the odometry at each time step. 

Grid error quantifies the propagation of error from 
the perception subsystem to the mapping 
subsystem. The “true” grid with perfect ground 
truth is compared to the grid created from the 
sensor data with errors. Error is quantified as the 
average difference in measured slope in each cell. 

Path error quantifies the propagation of error from 
the perception subsystem to the planning 
subsystem. The “ideal” path follows the centerline 
of the test lane, except for a deviation around the 
obstacle. The path error metric quantifies the 
average deviation of the vehicle from this ideal path 
during the experiment. 

 
6. Simulator 

The AGV simulator was the MSU Autonomous 
Vehicle Simulator (MAVS) [19]. The MAVS 
provides a software library for physics-based 
simulation of lidar and camera sensors. In this 
work, the MAVS library was integrated with ROS 

such that the simulated sensor data was published 
to standard ROS topics such as “PointCloud2”, 
“Image”, and “Odometry”.  

The Chrono multibody dynamics engine [20] was 
used to simulate the dynamics of the vehicle. The 
simulated vehicle reported the “true” pose of the 
vehicle to the sensor simulations.  

MAVS was used to simulate the effect of rain 
using the model presented in [21]. An example of 
the effect of rain on a lidar scan is show in Figure 
3, which shows the reduced range of scans in rain. 
Dust was simulated in MAVS using a particle 
system model [22] with optical properties derived 
from laboratory measurements of lidar-dust 
interaction [4].  

 

 

7. Experiments 
Experiments were conducted for the four error 

types shown in Table 1. Each error type was 
divided into increments. Additionally, simulations 
with no injected errors were run for comparison. In 

Metric Units 
Time to complete seconds 
Completion Boolean 
Collision Boolean 
Rolled Over Boolean 
Point cloud error meters 
Odometry Error meters 
Grid Error meters / cell 
Path Error meters 

Table 2: System and sub-system metrics 

Figure 3: Example of the impact of rain on a lidar point 
cloud. The left image is a top-down view of a scan during 
clear conditions, while the right is a scan from the same 

scene in 10 mm/h rain.  
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total, 3000 simulations were run, amounting to 
about 48 hours of simulated experiments. An 
example of output from a simulation is shown in 
Figure 4.  

 

 

8. Results 
 

8.1. System Performance 
The primary measure of system-level 

performance for the AGV is whether it successfully 
reached its objective and avoided a collision with 
the barrier and did not rollover the vehicle. Figures 
5-8 show the percentage of trials that resulted in 
failure. For the tested system, the overall failure 
rate was fairly low (6.5% of trials) and less than 1% 
in no- or low-error trials (ideal trials + smallest 
level of error). 

 

 

Figure 4: Example output from a simulation. 

Figure 5: Collisions and rollovers for lidar range error 
from 0-35 mm.  

Figure 8: Collisions and rollovers in rain (0 to 28 
mm/h).  

Figure 7: Collisions and rollovers for dust.  

Figure 6: Collisions and rollovers for GPS with Real-
time Kinematics pose error.  
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  Sensor Error Occupancy Grid Error Path Error  Collision  Rollover  

IDEAL 0.000 (0.000) 1.003 (0.073) 1.010 (0.398) 0.00% 0.00% 

LIDAR 0.016 (0.007) 1.080 (0.079) 0.907 (0.295) 1.43% 0.43% 

error = 5 0.004 (0.000003) 1.068 (0.071) 0.893 (0.166) 0.00% 0.00% 

error = 10 0.008 (0.000007) 1.064 (0.077) 0.894 (0.354) 3.00% 2.00% 

error = 15 0.012 (0.000011) 1.075 (0.081) 0.916 (0.344) 2.00% 0.00% 

error = 20 0.016 (0.000013) 1.062 (0.076) 0.886 (0.185) 0.00% 0.00% 

error = 25 0.020 (0.000019) 1.087 (0.067) 0.910 (0.306) 3.00% 0.00% 

error = 30 0.024 (0.000019) 1.095 (0.079) 0.946 (0.414) 1.00% 0.00% 

error = 35 0.028 (0.000026) 1.106 (0.090) 0.905 (0.209) 1.00% 1.00% 

DUST 0.085 (0.042) 1.037 (0.079) 1.936 (0.831) 1.25% 1.75% 

rate = 1 0.021 (0.009) 1.031 (0.080) 1.801 (0.625) 1.00% 0.00% 

rate = 2 0.042 (0.012) 1.039 (0.076) 1.834 (0.529) 2.00% 0.00% 

rate = 3 0.060 (0.013) 1.030 (0.086) 1.851 (0.552) 2.00% 0.00% 

rate = 4 0.082 (0.013) 1.049 (0.085) 1.959 (0.690) 0.00% 3.00% 

rate = 5 0.095 (0.015) 1.045 (0.080) 1.994 (0.600) 2.00% 1.00% 

rate = 6 0.115 (0.019) 1.026 (0.070) 1.892 (0.474) 2.00% 1.00% 

rate = 7 0.127 (0.018) 1.034 (0.077) 2.026 (1.149) 1.00% 5.00% 

rate = 8 0.137 (0.020) 1.047 (0.073) 2.133 (1.461) 0.00% 4.00% 

RAIN 5.994 (0.720) 1.429 (0.106) 0.823 (0.411) 14.29% 0.00% 

rate = 4 4.650 (0.125) 1.382 (0.098) 0.923 (0.280) 3.00% 0.00% 

rate = 8 5.411 (0.151) 1.406 (0.109) 0.892 (0.146) 3.00% 0.00% 

rate = 12 5.863 (0.170) 1.429 (0.106) 0.880 (0.380) 10.00% 0.00% 

rate = 16 6.187 (0.155) 1.438 (0.104) 0.851 (0.239) 5.00% 0.00% 

rate = 20 6.440 (0.190) 1.446 (0.100) 0.844 (0.588) 10.00% 0.00% 

rate = 24 6.602 (0.182) 1.439 (0.102) 0.740 (0.370) 22.00% 0.00% 

rate = 28 6.802 (0.202) 1.460 (0.107) 0.633 (0.588) 47.00% 0.00% 
GPS w/Real-time 

Kinematics  1.184 (0.672) 1.753 (0.464) 2.654 (1.580) 5.86% 2.43% 

error = 200 0.304 (0.064) 1.150 (0.116) 1.102 (0.297) 0.00% 0.00% 

error = 400 0.610 (0.142) 1.379 (0.159) 1.679 (0.469) 7.00% 0.00% 

error = 600 0.868 (0.235) 1.563 (0.228) 2.154 (0.658) 6.00% 0.00% 

error = 800 1.171 (0.315) 1.776 (0.284) 2.684 (0.996) 3.00% 0.00% 

error = 1000 1.520 (0.309) 2.005 (0.242) 3.043 (1.016) 8.00% 4.00% 

error = 1200 1.716 (0.466) 2.059 (0.331) 3.827 (2.032) 9.00% 6.00% 

error = 1400 2.099 (0.481) 2.341 (0.358) 4.085 (1.865) 8.00% 7.00% 



Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Predicting Error Propagation in Autonomous Ground Vehicle Subsystems, Carruth, et al. 
 

Page 8 of 11 

8.2. Sub-System Performance 
Table 3 shows the average sub-system 

performance. In ideal conditions the sensor error, 
the lidar range error, and the odometry error are 0 
by design. There is a minimum level of error 
observed in the occupancy grid in all conditions 
because the occupancy grid error is based on a 
comparison of the occupancy grid generated from 
the point cloud and a ground truth representation of 
the environment. In every case, there is error in the 
cells due to presence of objects on the map that are 
occluded and cannot be perceived even by the ideal 
lidar. We also observe some variability in the 
deviation from the path even in ideal conditions 
because the vehicle must leave the optimal path in 
order to avoid the obstacle.   

Figures 9-11 show the relationship between the 
measured error in a sub-system and the measured 
error in the downstream sub-system. For example, 
Figure 9 shows the relationship between the 
average error in the point cloud generated from the 
lidar data and the average error in the occupancy 
grid generated based on the point cloud error.  

At this first stage of processing from the sensor 
data to the occupancy grid, we observe a small, 
limited relationship between point cloud error and 
occupancy grid error.  

In contrast to the weak relationship between point 
cloud error and occupancy grid error, error in the 
odometry pose has a clear linear relationship with 
the observed occupancy grid error (see Figure 10). 
As the odometry pose error increases, the 
occupancy grid error also increases. Also, the 
occupancy grid error associated with odometry 
error is larger than occupancy grid error associated 
with the point cloud error.  

In Figure 11, we see a complex relationship 
between the error observed in the occupancy grid 
and deviation from the ideal path. When path 
deviation is near 0, the outcome of the trial is a 

collision with the obstacle. As the occupancy grid 
errors increases, we generally observe increasing 
deviation from the ideal path. There are examples 
of significant path deviation at lower levels of 
occupancy grid error that generally lead to 
successful outcomes. 

 
 

 
 
 
 

 

Figure 9: Scatterplot of Point Cloud Error compared to 
measured Grid Error across all runs. 

Table 3: Mean and standard deviation in sub-system errors (sensor – lidar range error for lidar, dust, and rain and pose 
error for real-time kinematics conditions, occupancy grid, and path error) and frequency of failures (collisions and rollovers). 
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9. Summary and Conclusions 

In this study, a lidar-based perception system, an 
occupancy grid world model, an A* path planner, 
and a pure pursuit control system were tested in a 
simple obstacle detection and avoidance task. In 

ideal conditions, the system performed very well. 
Even considering performance at the lowest levels 

of sensor and environment error, the vehicle 
achieved its objective in more than 99% of trials. 
However, in more realistic conditions that include 
inherent and environmentally induced sensor error, 
the system failed at significantly higher rates (6.5% 
across all trials and as high as 47% of trials for one 
condition).   

The increase in failures depended on the source of 
the error. Increases in lidar range error had little 
effect on failure rate and the rate of failure was not 
correlated with the increase in range error. 
Increasing odometry error led to increased risk of 
both collision with the barrier and rollover of the 
vehicle.  

Odometry error presents a challenge for 
autonomous vehicles. Common error rates for 
GPS-based systems range from 500 mm to 3000 
mm. The accuracy of the world model is highly 
dependent on the accuracy of odometry. The 
highest levels of odometry error resulted in failure 
in close to 20% of trials.  

For the lidar-based perception algorithm tested 
here, rain has a critical impact on lidar performance 
that leads directly to a failure to detect and avoid 
obstacles even at relatively low speeds (10 m/s; 
22.3 mph). At very high rainfall rates (24 mm/h and 
28 mm/h), the vehicle collided with the obstacle in 
22% and 47% of trials, respectively. Rainfall 
reduces the effective range of the lidar limiting the 
distance and time available for the vehicle to detect 
and respond to the obstacle.  

The dust cloud had a localized effect on 
perception that led to fewer failures than the global 
effects of increased rainfall. In some cases, the dust 
cloud was perceived as an obstacle leading the 
system to move and inadvertently avoid the actual 
obstacle.  

Despite being a very general measure of system 
performance, the system failure rates and the 
differences in failure rates for different sources of 
error provides insight into the fitness of the AGV 
system.  

Our results also indicate the need for repeated 
trials. In the simulations presented, there were 

Figure 10: Scatterplot of Odometry Error compared to 
measured Grid Error across all runs. 

Figure 11: Scatterplot of Grid Error compared to 
measured Path Error across all runs. Black horizontal line 

indicates ideal deviation to avoid the obstacle.
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random variations in vehicle start position, start 
orientation, and placement of trees that led to 
significant variations in system performance over 
100s of trials. In some of our scenarios, the failure 
rates are less than 1% but a single failure across 100 
trials in a simple obstacle avoidance task is 
unacceptable for an operational autonomous 
vehicle.  

This study set out to investigate the propagation 
of error through the sub-systems of the autonomous 
vehicle control software. However, our analysis of 
the sub-system performance does not indicate clear 
relationships in observed error at each of the stages 
of the AGV processing system. The authors believe 
this is at least in part related to the aggregate nature 
of our selected metrics. Each of the metrics is an 
average of the measure over the course of a trial and 
may not fully characterize momentary, critical 
errors in the sub-systems that lead to poor overall 
outcomes. 

Future work should revise the current sub-system 
metrics or identify new sub-system metrics. This 
should include examining time-series recordings of 
the sub-system metrics for analysis. In addition, the 
current work focuses on a particular AGV system 
that uses a lidar sensor paired with a slope-detection 
algorithm to generate an occupancy grid that is then 
used to plan a path that is then executed by a pure 
pursuit algorithm. There are many other 
combinations of sensors and algorithms that could 
be used for perception of the obstacles and 
investigating similarities and differences in 
different algorithms’ responses to error is expected 
to increase understanding of how error affects sub-
system and system-level performance.  
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